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Abstract. We consider the derivation of some statistical results for the ‘inverted’ harmonic 
oscillator (one with negative kinetic and potential energies), which are equivalent to ones 
that exist for the more familiar simple harmonic oscillator. It is an object that is frequently 
employed in modelling amplifiers in quantum optics, but also arises in statistical and 
quantum mechanics and is of interest in its own right. We hope that this account may 
help to elucidate its role as a potential amplifier. 

1. Introduction 

There has been much recent interest in optical amplification. Early hopes of cloning 
photons by stimulated emission were confounded when it was shown that the amplifier 
instead acts as a source of noise, statistically independent of the input field [ l ,  21. It 
was shown that both linear amplification and linear damping in a quantum system 
coexist with external noise fluctuations (see [3,4] and references therein). Both 
coherence and correlation properties of the output light have been researched [ 5-71. 
There have also been studies of minimum limits for the noise that accompanies 
amplification [8], as well as many derivations [9,10] of limits for squeezing-preserving 
intensity gains of squeezed output from linear light amplifiers, with subsequent attempts 
[ll-151 to overcome the latter bounds for atomic amplifiers. In particular, inverted 
oscillator light amplifiers have been the subject of much investigation, where such 
objects have been used to discuss fundamental problems in the quantum theory of 
measurement [ 161, the short-time behaviour in superfluorescence [ 171, and of a spin 
magnetic moment in a magnetic field [18]. 

Below, we briefly outline some properties of the inverted harmonic oscillator which 
are analogues of important relations obeyed by the familiar ‘upright’ harmonic oscil- 
lator, in terms of which modes of the electromagnetic field are described. We adopt 
Glauber’s model of an inverted oscillator [ 161 for the quantum amplifier, which assumes 
the following Hamiltonian: 

H=-’( 2 p 2 +  w * q * ) = - h w ( c i c + f )  

In) = ( C + ” / J n ! ) ( O )  c ln )=Jn ln - l )  

so that the annihilation operator evolves as c(  f )  = c(0) e’”‘. 
The nth stationary state In) obeys 

cicln)= nln) E,, = - hw ( n  + 4). 
We can obtain our inverted oscillator from the usual simple harmonic oscillator, 
described by operators a, ut, by the substitutions w + -w and a + c’, as in figure 1. 
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Figure 1. Harmonic and inverted oscillator potentials and stationary states. 

Figure 2. Harmonic oscillator coupled to a heat bath of oscillators 

Figure 3. Inverted oscillator coupled to a heat bath of oscillators. 

Important differences between the models of figures 2 and 3 have been found; see 
for example [ 161 and references therein. Physically, figure 3 represents a collection 
of atoms (the inverted oscillator), losing their energy to a bath of cavity field modes; 
the atoms may have all their ‘input’ modes occupied, but only one mode is amplified. 

Perhaps the most important message here is that, for linear systems, dissipation 
and amplification may be regarded, in a sense, as different manifestations of the same 
phenomenon of response to within the approximations that we have employed. This 
is independently borne out by the research of Dupertuis er a1 [13-151. 

2. The fluctuation amplification theorem 

Following Louisell’s derivation [ 191 of the fluctuation dissipation theorem, for the 
model of figure 2 ,  we obtain a connection between amplification and quantum (vacuum) 
fluctuations for an inverted oscillator coupled to a heat bath of oscillators (see figure 
3 ) .  Let c and {b,} be the annihilation operators for the inverted oscillator and bath 
oscillator modes respectively. The system is described by the Hamiltonian 
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where 
HI = f i  2 ( K , b , C +  ~ 7 C ' b : )  (1b) 

and { K , }  are a set of coupling constants. Henceforth we omit the zero-point energies, 
and set h = 1. 

Working in the Heisenberg picture, we find the following equations of motion: 

I 

b,(t) 5 -iw,bJ -iKfc+ (2a )  
r r  

d ( t ) = C I ~ , l *  J d ( t ' )  exp[ i (wJ-oC)( t - t ' ) ]dt '+Gd 
J 0 

where d is the interaction picture operator, given by d (  t )  = c( t )  exp( -iwct) and Gd = 
-i XI ~ T b j ( 0 )  exp[i(w, - w c ) t ]  is the Langevin (random) force giving rise to fluctuations 
in the system. We adopt the Weisskopf-Wigner approximation to produce a truly 
dissipative subsystem, the reservoir. Thus we obtain 

(3) 
d 
- d (  t )  = ' d (  t )  
d t  2 Gd ( 1 ) .  

The term i y d ( t )  signifies the mean drift motion, whilst Gd(t) is a noise source. 
Assuming the system to be Markovian, we find, on tracing over the reservoir in thermal 
equilibrium, that 

(d(f))R = exP(Yt/2)''(0). (4) 

We can thus justify calling y = 2 n g ( w , ) l ~ ( w , ) / ~  the 'amplification constant'. Here, 
g(w, )  is the density of states within the bath at the central oscillator frequency. After 
some standard manipulation [ 191, which involves evaluating the cross-correlation 
function Fdtd(tl - t z )  = (Gd+(  tl)Gd(f2))R, by integration over U,, assuming 
g(w, ) /K (w, ) l * f i (w , )  is a slowly varying function of w,, we integrate over 7 to arrive at 

where f i (w, )  = (bj(O)b,(O)), is the mean photon number in the j t h  bath oscillator and 
we have gone to the continuum limit in j ,  the bath variables. This takes the form of 
a 'fluctuation amplification theorem', wherein the system amplification rate y and the 
reservoir fluctuating forces which introduce fluctuations into the system are interrelated. 
An alternative, but equally valid, expression for the theorem is 

(5b) 
1 "  

n - t l  -" Y = 7  5 (Gd+(T)Gd(O))RdT. 

3. The Einstein relation and spectra 

In similar fashion, we can derive a Langevin equation for the photon number in our 
inverted oscillator (see also [4]). We find under the Markov approximation that 

where the relevant Langevin force is 
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and t ,  is a time such that O <  T ~ < <  t - t,<< y - I .  The correlation time 7, is a minimum 
time in which the Langevin forces change significantly. We define the 'diffusion 
coefficient' by 

with T,<< At<< y - ' .  With the assumption that the integrand assumes its peak value 
when wj = w c ,  we can extend the lower limits to -CO. Finally, we have that 

which is the Einstein relation for the diffusion constant. For example, for our problem, 
using equations ( 3 )  and (6), 

2 ( D d * d ) ~ =  y (  + 1 ) .  ( 10 )  

That is, the diffusion constant is given in terms of the drift terms, which determine 
the mean underlying motion of a system. We can generalise equation (9),  so as to 
include spin-flip operators describing two-level atoms, or oscillators which obey Fermi- 
Dirac statistics, as in [20]. 

Next, we define the fluctuation, intensity and photon number spectra (unnor- 
malised), for our example, respectively, by 

m 

I, = 5 e - iw ' (c t ( r ) c (0 ) )  dt  

I2 = I-, e-'"'(c'(O)c'( t ) c ( t ) c ( O ) )  dt  

e-iwf(c'(t)c(t)c'(0)c(O)) dt. 

-a2 

m 

cc 

I3 = I, 
Evaluating these using equations ( 3 )  and (6), we find that 

( 1 2 b )  I 2 - 2 2 y  2{(c'2(0)c2(0))+(A+ l ) ( c t (0 )c (O) ) } -27r (A+  l ) ( c + ( O ) c ( o ) ) S ( w )  
Y + w  

2Y 
Y + w  

I3 = I2 - ~ ( c + ( O ) c ( O ) ) .  

A is the mean photon number in a bath oscillator at frequency w,. The positivity of 
the spectra is borne out, since C'C represents a de-excitation, that is a negative energy, 
on the absolute energy scale. This arises because of the even powers of operators in 
their definitions ( 1  1 ), so positive definiteness is assured. For comparison, the corre- 
sponding expression for I, for the model of figure 2 is 

Y(a+(o)Q(o)> Z,(a, a t )  = 
( w - w c ) 2 + ( Y / 2 ) 2 '  
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4. Discussion 

Because we are dealing with a Markovian evolution, the quantum regression theorem 
(QRT) will be of relevance. In our case, we can use it to find an expression for y. We 
need to evaluate ( Gd (7 )  Gd+(0))R, which arises in the expression for the fluctuation 
amplification rate, of equation ( 5 a ) .  Now Gd( t )  = -iZ, KFbJ(0) exp[i(wl -w,)t]. 
Hence by the QRT 

(Gd ( t T)) = c a, ( Gy)(  t ) )  (13) 
I 

where CX,(T)  = - i K F  exp[i(wJ -w, ) ( t+  T)]  and Gy'(t)  = b j (0 ) .  Temporarily assuming 
y to be time dependent, we find that 

. r x  

= (b:(O)( i c K,bl(0) exp[ - i ( q  - w c ) t ]  Fi I 

If the reservoir is in thermal equilibrium, then (bj(o)b,(O)),= aj,fi j .  Setting t = 0, and 
taking / ~ ( ~ ~ ) l ~ f i ( w , )  to be a slowly varying function of wl, the sum becomes an integral, 
giving 

Y = 2 w ( ~ c ) l K ( ~ c ) 1 2 .  (15) 
This is the response rate familiar from time-dependent first-order perturbation Fermi 
golden rule theory. It is interesting to note that (14) takes the form of a 'Kubo equation' 
[21,22] which gives the response of a system to an oscillatory perturbation. Further, 
Nyquist's theorem [21,23-251 in statistical mechanics relates the generalised resistance 
(an irreversible process) to the fluctuations of the generalised forces in linear dissipative 
systems. Thus spontaneous (i.e. vacuum stimulated) transitions may be considered as 
arising from the random fluctuations of the electromagnetic field in the vacuum state 
(the dissipative system), acting as an excited atom [26]. 

We conclude this section by noting the difference in structure of the Langevin 
equations of motion for harmonic and inverted oscillators, respectively, 

Gf(t) = -i c Kjb,(0) exp[-i(w, -w,)f]  
J 

and 

d 
d t  - d ( t ) = f yd ( t ) -I- Gd ( t ) 

G d ( t ) = - i x  K:b:(O) eXP[i(w,-w,)t] 
J 

where f( t )  = a(  t )  e'"'. 
Nevertheless, the dissipation width 
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is identical with the fluctuation width of ( 5 a ) ,  as we have shown above using the QRT, 
or as can be proved by direct substitution. 

5. Conclusions 

We have discussed the exponentially increasing energy loss of an inverted harmonic 
oscillator by its linear coupling to a collection of harmonic oscillators from a statistical 
viewpoint. It was found that, just as for the equivalent linear damping problem, the 
central oscillator lost its energy to the bath, which in turn returned part of that energy 
in a random fashion back to the primary oscillator. 

The operation of a quantum linear amplifier adds Langevin noise to the emitted 
signal, thus degrading the efficiency of the output by decreasing the signal-to-noise 
ratio. In going from attenuator problems to the analogous amplifier problems with 
which we have dealt above, we have found that the replacements w + - w  and a + c' 
in the formalism have the same effect in the results as the naive substitutions 

- y + y  and t i e A + l .  

The first of these changes is perhaps to be expected; the factor of unity in the 
second is an intrinsic spontaneous emission term, essential for the elucidation of 
quantum amplification. The Langevin equation ( 6 )  for the photon number is a good 
example of how both input photons and zero-point photons initially present are 
amplified. Prudence is necessary in fashioning the time evolution of physical systems 
comprising the inverted oscillator; for large enough times, the evolution becomes 
non-linear and the model breaks down. 
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